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The paper investigates the formation of spurious vortical structures in incom-
pressible flow simulations employing Godunov-type methods. The present work
is motivated by the earlier studies of Brown and Minion (1995Comput. Phys.

122, 165 and 1997). Comput. Physl38 734) who demonstrated for a variety of
numerical schemes (and for the upwind-biased methods in particular) that spuri-
ous vortices can occur in underresolved flow simulations. The aim of our work is
threefold: (i) to identify deficiencies in various Godunov-type methods leading to
spurious flow structures, (ii) to examine the numerical mechanisms responsible for
these artifacts, and (iii) to propose modifications of Godunov-type methods in order
to recover the correct solutions even under insufficient grid resolution. Our results
reveal that the occurrence of spurious solutions depends strongly on the Godunov-
type method employed. We show that in addition to the dissipation properties of a
scheme—emphasized by Brown and Minion—there are other factors that can also
contribute to numerical artifacts. These include a vortical instability arising from
the numerical discretization of the advective terms in the primitive variable formu-
lation of the Navier—Stokes equations, the balance of dissipation among the differ-
ent discretized terms in a Godunov-type method, as well as order of accuracy of
the interpolation used to discretize the wave-speed dependent term of the Godunov
flux. (© 2001 Academic Press
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1. INTRODUCTION

Brown and Minon [1, 2] have documented, for various numerical methods, a class
numerical artifacts (“spurious eddies”) that occur in underresolved simulations of tw
dimensional (2D) incompressible vortex-street flows. In [1], they showed that the seco
order Godunov-projection method of Bellal.[3] leads to spurious eddies for simulations
performed onrelatively coarse grids. In [2], they explored several numerical methods incl
ing the Godunov-projection, a primitive variable ENO, a pseudo-spectral, as well as upw
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and centered vorticity/stream-function methods. There, they showed that the formatiot
spurious vortices can occur with all methédghe grid resolution is insufficient; however,
upwind-biased schemes, such as the second-order Godunov-projection method, re
higher resolution to avoid spurious eddies. Furthermore, they suggested that the add
of artificial viscosity can prevent these vortices even on coarse grids, but at the expens
more diffusive solutions. They argued that these artifacts are not a high wavenumber ef
but rather represent the growth of unstable low wavenumber perturbations introducec
the truncation error of the methods.

Our work is motivated by Brown and Minion’s [1, 2] studies. In general, we seek ¢
understanding of the numerical mechanisms underlying the formation of spurious vorti
structures in underresolved flows. Using heuristic vorticity arguments, we identify speci
terms of the truncation error responsible for the spurious solutions. This guides us tow
modifications of the Godunov-type methods that attain correct physical solutions even w
coarse grids are employed.

The assumed physical/mathematical scenario is quite elementary: the evolution ¢
2D vortex street in a homogeneous incompressible fluid on a doubly periodic unit-squ
domain, described by the standard incompressible Navier—Stokes equations,

o _
9X%;
1)
au; ou; u; _ apJr 1Au-
at ' dax; 9%  Re

Here,u; (i = 1, 2 refers to the space coordinatesy) are the velocity componentp,is the
pressureReis the Reynolds number, anés the time; all variables are properly normalized.
The particular flow simulated is that proposed in [3] and studied extensively in [1, 2]. T
initial condition consists of a double shear layer

)

tanh((y — 0.2548) if y <05

tanh((0.75—y)8) if y > 0.5,
wheres determines the shear layer thickness that is weakly perturbed in the spanwise di
tion. Such a flow is hydrodynamically unstable (see e.g., [5], Chapter 7.1) and, therefore,
may expect different flow realizations depending on the initial perturbation. Subsequen
this can affect the response of numerical schemes employed—especially the response
nonlinear schemes such as Godunov-type methods—and any spurious solutions assot
with it. In order to reduce the investigated area of the solution space to a necessary n
mum, here (as in [1, 2, 3]) we will consider only a sinusoidal perturbation of the spanwi
velocity

v = v'sin(2rx), (3)

wherev’ is the perturbation amplitude. As defined, the problem has the converged solut
that takes the familiar form of a regular vortex street (Fig. 1a)—an apparent manifestat
of the unstable wave-number-one mode. The spurious solutions evince a secondary

1Recently, Tolstykh and Chigirev [4] showed that compact schemes implemented in the framework of
vorticity/stream-function formulation also result in spurious eddies.
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FIG.1. (a)Correctand (b)spurious solutions for the problem of the double shear-layer; The results corresy
to Re= 1000Q § = 100, v" = 0.05 at dimensionless tinte= 1.

embedded between the two primary vortices (Fig. 1b), thus manifesting a slower growtl
the nonlinearly generated wave-number-two mode. Qualitatively, the relative growth r
of the two modes is consistent with the development of shear-gravitational instabilities |
where the longer wavelengths amplify faster in the nonlinear regime of the flow. The spi
ous numerical solution is physically realizable, and perhaps even preferred in a labora
scenario, as for a solenoidal white-noise initial perturbation, our experiments showed
all solutions evince the secondary eddy. However, for a fixed Reynolds number and
sole excitation of the primary mode, the spurious vortices do disappear when the gri
sufficiently refined, for all methods considered in this paper. The details of this converge
depend both on the Reynolds number and the advective scheme employed. Thus, alth
the problem may be somewhat academic from the physical viewpoint—as bifurcated s
tion are admissible (cf.[7, 8], for a discussion)—it forms an interesting testbed for numeri
methods in CFD, especially since it seems to elude clear understanding.

A series of numerical experiments performed in this study using various Godunov-ty
methods showed that the generation of spurious eddies depends strongly on how the nt
ical dissipation is partitioned between different terms of the advective scheme. Asin [2],
have found that both centered and upwind methods can lead to spurious solutions. Fur
more, our numerical experiments revealed that in the case of centered-differencing-b:
Godunov methods, spurious vortices may or may not appear depending on the detailed
of the Godunov flux. The latter shows that not all Godunov-type methods result in spuri
vortices.

We have augmented our experiments focused on Godunov-type methods with an auxi
study (to be reported elswhere) using the nonoscillatory-forward-in-time (NFT) approc
of Smolarkiewicz and Margolin [9]. The NFT approach is based on upwind-biased methc
but can employ optionally either Eulerian (viz., flux-form) [11] or semi-Lagrangian (viz
advective) form [12] finite-difference approximations for the governing equations of m
tion. These experiments reveal that semi-Lagrangian (i.e., trajectory wise) integrals ten
produce correct solutions as in Fig. (1a), whereas Eulerian (i.e., control-volume wise) ir
grals tend to evince the secondary eddy (cf. Fig. 1b). Our experience with the NFT meth
is that the Eulerian option is more accurate/effective in applications in which the physics

2To our knowledge there has been no investigation of spurious eddies in 3D flows—likely because of
prohibitive computational expense of the 3D convergence studies for a range of methods.
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the problem depends on a detailed balance of the momentum fluxes. This contrasts witl
semi-Lagrangian option, which appears more accurate/effective for problems governe
vorticity dynamics; cf. [13]. The latter observation, coupled with the results from the NF
simulations, have suggested a vorticity analysis of the discretized momentum equatior
the context of Godunov-type methods.

A rigorous vorticity analysis of nonlinear approximations, such as of the high-ord
Godunov-type (or NFT) schemes, appears hopeless. To illuminate the issue, we offel
stead heuristic vorticity arguments with the essentials of the Godunov-type method:
mind. These arguments suggest that reducing the order of accuracy in the discretize
of the wave-speed dependent term of the Godunov flux (henceforth labeled WST; see
Sec. 2.1) should counteract the formation of spurious eddies. Numerical experiments
roborate this deduction. Discretizing WST using first-order-accurate interpolation corre
the numerical solution of all those Godunov-type methods that previously led to spuric
vortical structures. Although the exact numerical mechanism responsible for the genera
and disappearance of the spurious eddy is not fully understood, we appreciate that redt
the order of accuracy of the discretized WST term modifies the nonlinear dissipation
the Godunov-type methods. To assess the effects of the modified WST on the accu
of the methods, we present error estimation for the original and modified schemes
different flow problems including the one in question.

The paper is organized as follows. In Section 2, we outline the computational framew
and summarize briefly the Godunov-type methods employed. In Section 3, we disc
solutions obtained by different Godunov-type methods. In Section 4, we present a vorti
analysis that aims at explaining the formation of spurious solutions, and propose a rem
for suppressing the spurious eddies in Godunov-type methods. We conclude our stuc
Section 5.

2. NUMERICAL FRAMEWORK AND GODUNOV-TYPE METHODS

The numerical framework exploited in this study is the incompressible Navier—Stok
solver described in[14, 15]. Below we comment briefly on the essential aspects of the de:
of the solver while referring the reader to the earlier work for further details.

To take full advantage of the Godunov methods designed for hyperbolic conservat
laws, the incompressible equations (1) are cast in a compressible format by mean
the artificial-compressibility approach. The classical formulation of Chorin [16], suitab
for steady-state problems, is extended to transient flows [17—20] via an approach refe
sometimes to as dual-time stepping. The overall idea of the dual-time stepping can
summarized as followdAt each instant, the augmented pseudo-compressible system,

10 au;

__p+_' =0

Bat | ax @
au; d - 1
. + a—xj(uiuj + pdij) = —a(up — Uj) + @Aui,

3 An alternate summary could be given in terms of the implicit discretization of the system (1) with the Eule
backward scheme, forming the system of nonlinear Helmholtz equations, and solving it iteratively by augmen
the elliptic problem with a pseudo-time integration (cf. [10]).
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is integrated in a pseudo-timeto a steady state, assuming an artificial speed of sQ(md
Here,; denotes the solution at the instanwhereas all tilde-free variables are allowed
(in principle) to vary in the pseudo-time € [t, t + At]. The attenuation forcing on the
right-hand side (rhs) of the momentum equation damps the flow divergence to zero (gi
alij /3% = 0) at the ratex = (At)~L. In the steady state at=t + At, all 3/t terms
vanish and the damping term on the rhs becomesthgit derivative of the Godunov
scheme at hand, i.e., the solution becomes th& solution att + At. In our model the
default time integration with respect teemploys a fourth-order Runge—Kutta scheme [21
(selected, primarily, for the optimum performance on nonuniform grids) while a nonline
multigrid method [14] is used to accelerate the convergence toward the steady state.
viscous terms are discretized by standard central differences. The reader interested in fu
analysis of the artificial-compressibility approach is referred to [24].

In order to establish whether any other part of the algorithm, apart from the discretizat
of the advective terms, contributes to spurious solutions, we performed calculations u:
the first-order Euler-forward as well as second- and third-order Runge—Kutta [21] tin
stepping schemes both with and without the multigrid accelerator. The results revee
that neither the multigrid algorithm nor the order of the time-stepping (Euler or Rung
Kutta) scheme alter the numerical solution, thereby supporting the conclusion that from
algorithmic point of view, the formation of spurious vortices depends solely on the advect
scheme employed. Thisis corroborated by the results of the auxiliary experiments with se
Langrangian and Eulerian NFT schemes (see Introduction) which indicate that the isst
unrelated to a truncation-error violation of vector differentiation identitées<(Vp = 0,
in particular; cf. [22, 23]) as both variants of the NF T algorithms differ only, but essentiall
in representing advective transport on the grid.

For further reference, let us focus attention onxttdirection advective flux in all three
equations of the system (4):

u
E=|u+p|. (5)
uv

In all Godunov methods considered in this study, the advective flux deriv@Ey@x
is discretized at the center of the control volumgj} using the values of the intercell
fluxes, i.e.,0E/9x = (Ei+1/2j — Ei—1/2,j)/AX. To simplify the notation, the subscript
will be omitted throughout the rest of paper. The definition of the intercell flux functio
distinguishes among the different Godunov-type methods implemented in this study wit
the artificial-compressibility framework (4).

2.1. Rusanov Scheme [25]
The Rusanov flux (henceforth label&U) at a cell facei(+ 1/2) is given by

1 1
Eij12 = E(EL+ER)—§§(UR—UL), (6)

whereE, = E| (U.) and Egr = ERr(UR) denote the left and right states of the flux, re-
spectively, at the cell face of the computational volume; cf. [25, 26]. Similaiyand

4The artificial compressibility parameterfs= 1 throughout this study.



314 DRIKAKIS AND SMOLARKIEWICZ

Ur are the left and right states, respectively, of the vector of the primitive variables U
U = (p,u,v)" at the cell face of the computational volume. The second term in the rhs
(6) is the wave-speed dependent term (WST). Following Davis [27], the §eisdiefined

as the maximum wave speed, i.e.,

S" = max|uL — s_|, [ur — Srl, [U_ + S|, [UR + Srl). (7)

where, in the context of the artificial-compressibility approach, \/u? + 8. For the cal-
culation of the left and right states we employ nonoscillatory interpolation for the primitiv
variables (see Section 2.6).

2.2. Lax—Friedrichs Scheme [28]

If in the Rusanov flux one defin&™ as the maximum wave speed found by imposing the
Courant—Friedrichs—Lewy (CFL) stability condition—i.&" = Shax= CAX/At, where
C is the CFL number—then, fa€ = 1, one obtains the Lax—Friedrichs flux (henceforth
labeledL F):

1 1AX
EBii12= E(EL-FER)—EE(UR—UL). (8)

2.3. Einfeldt's Scheme [29]

Einfeldt's HLLE scheme [29] is an extension of the Harten—Lax—van Leer (HLL) schen
[30]. The central idea of the HLL scheme is to assume a particular wave configuration
the solution, consisting of two waves separating three constant states. Assuming tha
wave speeds are defined through a given algorithm, one can apply the integral forn
the conservation laws and obtain an approximate expression for the flux. The differe
between the original HLL scheme [30] and its HLLE version lies in the way the wav
speeds are calculated. According to the HLLE scheme, theHlisxdefined by

bi-:l/Z EL— bi_+1/2 Er bi++1/2bi_+1/2

Eiyi2 = (Ur —Up), )

— +
bi+1/2 — Mi+1/2 bi+1/2 — Mi+41/2

Wherebitl/2 = max(*1)i, (A1)i+1) andbijrl/2 = min((X2)i, (A2)i+1). In the context of the
artificial-compressibility approach, the eigenvalaggnda, are given by

M =u++u?+p, Ao =U—y/ U2+ B. (10)
The Rusanov flux can also be obtained from (9)if; , = —bj".; , andb}’,, , is defined

by (7) [27].

2.4. First-Order Centered Scheme [31]

The first-order centered scheme (FORCE) proposed by Toro [26, 31] is written as
arithmetic average of the Richtmyer and Lax—Friedrichs schemes. The cell-face fluxis gi

by

(ER12+ Ef1)2). (11)

NI

Eii12=
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where ER' and ELF denote the Richtmyer and Lax—Friedrichs fluxes, respectively. Tt
Richtmyer flux is given by

Eir12 = E(UTL5). (12)
where
e 1 1 At
UtLs =§(U§+UT)—§E(EQ—ET)~ (13)

Inthe original FORCE [26, 31RandL appearing onthe rhs of (13) and (8) refeirte 1 and

i, respectively. The original scheme was developed for compressible flows, mhete'2

in (12) and (13) denotes a half-time level between two consecutive physical time insta
In the context of the pseudo-compressible systemr(¥); 1/2 denotes an intermediate
pseudo-time level betweanandr + Ar.

2.5. Uniformly High-order (UHO) Scheme [15]

The uniformly high-order (UHO) scheme for incompressible flows [15], draws from tf
ideas underlying the essentially nonoscillatory (ENO) approach [32, 33]. It aims at incre
ing the accuracy of the intercell fluxes via a high-order interpolation (flux reconstructic
procedure, that can be briefly summarized as follows.

A characteristic-based scheme [7, 34, 35]is initially used to provide afirst approximati
for the advective fluwxE; at the cell centers. Then, the cell-centered approximated fluxes
are interpolated to provide high-order accurate IEft)and right ERg) intercell fluxes. For
example, theEg flux is defined as

r—2

(ERiyiz= Y, oEi, (14)
k=—r+3-n

where:r denotes the order of accuracy of the resulting scheme, mith0 Vr > 3 and
n = 1ifr = 3; and the coefficientg, areconstantveights defined by an analytic procedure
that minimizes the numerical dissipation and dispersion [15]. In the present study, we h
employed the third-order version of the scheme for which the values of the coefficie
are:ag = 5/6, ¢ = —1/6, anda_; = 1/3. This high-order interpolation can be retained
throughout the computations only in the case of periodic boundaries (present problem
the vicinity of solid boundaries the second-order-accurate scheme would be used.
Finally, the left and right intercell fluxes are combined using the Lax—Friedrichs schel
(8) to calculate the new intercell fl& 1,2, which is subsequently used in the discretizatior
of the advective flux derivative.

2.6. Cell-face Evaluation of Y and Ug

All listed Godunov-type methods require calculations of left and right states of the pril
itive variablesU, andUg, at the cell faces. In this paper, two interpolation schemes ha
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been employed: (a) the “third-order” Lagrangian interpofator

1 1
U= 6(5Ui —Ui_1+ 2Ui;1), Ur = 5(5Ui+1—Ui+2+2Ui), (15)

and (b) the MUSCL scheme [37]. MUSCL defines the left and right states as

U= U, +%[(1—kg)V+(1+kg)A]Ui (16)
Ur = Upss — %[(H KG+1)V + (1 — KG+1)V]Uj 1. 17)

Parametek controls different MUSCL realizations: fully upwind fér= —1, third-order
for k = 1/3.% and centered fok = 1; g; is the van Albada limiter [38]

_ 2VU; A U;
T (VUD2Z (AU + €

i (18)
In (16)-(18),VU; = U; — Ui_1, AU; = U; 1 — U;, ande is a small positive constant pre-
venting division by zero.

3. SPURIOUS SOLUTIONS

Here, we substantiate our earlier assertion (see Introduction) that the occurrence o
spurious eddies in the vortex-street simulations (Fig. 1) depends strongly on the advec
scheme employed. We have used the Godunov-type methods listed in the preceding se
in conjunction with either the Lagrangian interpolation (15) or different variants of th
MUSCL scheme. All simulations were performed on both the “coarse” (228) and
the “fine” (256 x 256) grid. In order to confirm the convergence of the fine-grid solution:
selected simulations have been repeated on the<®P2 grid! Together this has led to
a large series of numerical experiments gathering a systematic evidence on the resp
of various schemes. All experiments assumed a Reynolds nuRéer 10000 in (1),
the thickness of the shear lay&e 100 in (2), and the amplitude of the initial spanwise
perturbationy’ = 0.05 in (3). Depending on the Reynolds number and the thickness of tl
shear layef,the number of vortices can be increased or reduced [1-3]. The larggrttee
more likely is the occurrence of the spurious solutions. Here, we consider a relatively t
layer to emphasize the development of the spurious eddies—in [1=2B0 ands = 100
were employed.

The results of 48 numerical experiments regarding the occurrence of the spurious €
are summarized in Table I. Representative results of both correct and spurious solution
the coarse grid are also shown in Fig. 2. In the table, the variants of the MUSCL scheme
labeled asMUFU (corresponding t& = —1), MU3 (corresponding t& = 1/3), andMUC
(corresponding t& = 1). Simulations using the Lagrangian interpolator (15) are labele

5 Note that the interpolation in (15) is not third-order accurate per se, but it ensures third-order accuracy of
WST term Ugr — U, ), [36].

8Fork = 1/3, the scheme is strictly third order only for one-dimensional problems.

" The reader interested in the morphology of highly resolved solutions and its implications for the mechar
of the spurious eddies is referred to [39].

8 Note that larges leads to a thinner shear layer.
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TABLE |
Response of Various Godunov-Type Schemes with
Respect to the Occurrence of Spurious Vortical
Structures, for the Double Shear Layer Problem
(Re=10000,6 = 100,v’ =0.05)

Scheme 128 128 256x 256
RU-L3 Correct Correct
RU-MUFU Correct Correct
RU-MU3 Correct Correct
RU-MUC Correct Correct
UHO-L3 Spurious Correct
UHO-MUFU Spurious Correct
UHO-MU3 Spurious Correct
UHO-MUC Spurious Correct
LF-L3 Correct Correct
LF-MUFU Correct Correct
LF-MU3 Correct Correct
LF-MUC Correct Correct
FORCE-L3 Spurious Correct
FORCE-MUFU Spurious Correct
FORCE-MU3 Spurious Correct
FORCE-MUC Spurious Correct
FORCE-L3 Correct Correct
FORCE-MUFU Correct Correct
FORCE-MU% Correct Correct
FORCE-MUF Correct Correct
HLLE-L3 Correct Correct
HLLE-MU3 Correct Correct
HLLE-MUC Correct Correct
HLLE-MUF Correct Correct

Note.See the text for the definition of acronyms.

with “L3.” For example, RU-MUFU and RU-L3 denote the Rusanov flux in conjunctiol
with the fully upwind MUSCL and “third-order” Lagrangian interpolation, respectively
For the FORCE scheme, in particular, different variants can be constructed if the MUS
or L3 interpolators are implemented in both tB8' and ELF fluxes (see Eq. (11)), or in
only one of them. Our numerical experiments revealed that the first term, on the rhs
(8), of the fluxELF in (11) must be calculated by higher-order interpolation, otherwise tt
solutions become overly diffusive (yet spurious-eddy free). In the Table I, an exponent'
indicates wherever higher-order interpolation is also used in thesfiin (11); recall that
the original FORCE scheme [26, 31] employed the first-order interpolation both f&the
andE'F fluxes.

Table | supports interesting conclusions. We draw attention to several points of spe
note:

e With the selectedRe §, andv’, all analyzed schemes yield the correct solution on thi
fine grid.

e The spurious-eddy-wise performance of a Godunov-type method does not depen
whether the “third-order” Lagrangian or MUSCL interpolation are employed.



318 DRIKAKIS AND SMOLARKIEWICZ

FIG. 2. Representative results from spurious and correct solutions obtained by different Godunov-type m
ods: (a) UHO-L3, (b) RU-L3, (c) FORCE-L3, and (d) HLLE-L3.

e The Rusanov (RU), Lax—Friedrichs (LF), and HLLE schemes do not evince spuric
eddies even on the coarse grid.

e Although RU, LF, and FORCE schemes have substantial similarities—none of them
quires solving the Riemann problem, and they all qualify as centered schemes—the vari
FORCE-L3, FORCE-MU3, FORCE-MUFU, and FORCE-MUC exhibit different behaviol
In addition to the spurious solution, they exhibit a slight asymmetry (the spurious eddy
shifted to the left). Thus, the centered schemes appear less prone, but not uniformly
mune, to developing spurious vortical structures—a corroboration of the earlier results
the centered-schemes [1, 2, 40].

e Higher-order interpolation of the Godunov flux within a computational stencil has r
direct impact on the occurrence of the spurious eddies. For example, the third-order ver
of the UHO results in spurious vortices despite the higher accuracy of interpolation.

¢ All FORCE schemes that use higher-order interpolation irgReflux in (11) are less
diffusive than the equivalent schemes with the first-order interpolation employegffor
yet they evince no spurious eddies. This contrasts with the opinion (e.g., [2]) that increas
artificial viscosity remedies spurious eddies. Apparently, both increasing or decreas
artificial viscosity may prevent or excite spurious eddies.

The collected observations elude a clear explanation of the spurious solutions. In pa
ular, the classification of Godunov-type methods as centered or upwind is insufficient
explain the tendency of a scheme toward spurious eddies; and the spurious solutions
appear in coarse-grid simulations cannot be mitigated by simply increasing the accul
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of the advective schenfe-urthermore, the auxiliary computations with the NF T method
(not shown; see Introduction) suggest that formally a less-accurate advective-form sch
can result in a correct solution while a related and more accurate flux-form algorithm n
still evince spurious eddies.

At this stage, we speculate that the results depend on the nonlinear dissipation of
vorticity whose detalils, in turn, depend on the the momentum flux formulation. In differe
Godunov-type fluxes, this may or may not lead to a vortex instability. In the next sectic
we exploit an idealized analytic model to assess the effects of numerical discretizatior
the production of spurious vorticity.

4. VORTICITY ARGUMENTS AND NUMERICAL MODIFICATIONS

4.1. Vorticity Arguments

In order to assess the impact of discretizing the momentum equation on vorticity ger
ation, we consider the inviscid system in (1). Using an explicit discretization in time whi
retaining a continuous representation in space leads to an idealized algorithm,

.ou _du ap
Ul =u" - At — 47— 4+ — 19
(ax+”ay+ax) (19)
d a a
o=t — At ol 45 4 P, (20)
X ay oy

wherell andv'identify the advective (as opposed to advected) velocities. Differentiating (1

in y and (20) inx, subtracting the second equation from the first, adding and subtracti

the termsuy iy and vy, and using the mass continuity relatidn + vy = 0, gives the

vorticity equation

n+1 _ "
At

@ ~ ~ ~ ~ ~
+0- Vo = (lxuy — uxlly) + (Uxvy — vyy). (21)

Inthe continuous modél, = u so both terms on the rhs of (21) vanish identically, leaving th
correct time-discretized vorticity equation for ideal 2D flows. In discrete models, howev
0 # u in general, and the two terms on the rhs of (21) do not vanish. TypidaHy,
u+ O(Ax?), and the artificial vorticity source appears at the second order. This by
means implies that suppressing the source necessarily requires a fully third-order acct
discretization of the momentum equation in (1). Favorable cancellations can adeque
reduce the amplitude of the source at the lower order, as illustrated by our results genel
with Godunov-type methods (preceding section).

To illustrate the sensitivity of the solutions to details of the discretization, one can perfo
a variety of numerical experiments of greater or lesser degree of practical relevance.
instance, using a fully nonstaggered mesh, with standard centered differences for discr
ing uVu terms in the nonconservative form of the momentum equation, gives a stand
oscillatory algorithm rarely used in high-speed flow applications. Yet, this scheme yie
zero vorticity source on the rhs of (21), and reproduces the correct solution in our simt
tions of the vortex street even at the coarse grid. However, just smoothing out the advec

9 This is similar to the results obtained in [2] for calculations based on pseudo-spectral and ENO methods
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filtered

velocity with the standard 1-2-1 low-pass filter [i.g., = 0.25¢i 11 + 20 + ¢i_1)]
suffices to form the spurious eddy. Another standard centered scheme that uses the
form of the momentum equation, with fluxes defined at the cell faces via arithmetic av
aging, also results in the spurious eddy. Since modern flux-form schemes tend to exj
the difference between the advective and advected velocities, they are more prone to
artificial vorticity sources than the advective-form algorithms.

For simple algorithms such as standard centered differences, it is tedious but feasib
derive the complete finite-difference vorticity equation implied by the discrete momentt
equation, and to expose the explicit form of the error on the rhs of (21). In the case of cc
plicated algorithms such as Godunov-type methods, this seems a hopeless task. How
some insights can be obtained if one attempts to pursue heuristic vorticity arguments \
the general form of the Godunov flux

1 1
Eij12 = E(EL+ER)—§|A|(UR_UL)» (22)

whereA approximate® E/dU (the entries of the Jacoby matrix, in general).

When considered in the context of the momentum equations, the first term on the
of (22) is, in essence, a nondissipative centered-in-space finite-difference approxima
to the momentum flux. In the implied vorticity equation, this term will tend to generat
spurious sources as those observed in the experiments with elementary centered flux-
schemes. The second, WST, term on the rhs of (22) is, in essence, a Fickian flux o
with the diffusion coefficient dependent on flow variables. In the implied vorticity equatio!
similar to an eddy viscosity, this term will spawn two type of terms: equivalent Fickia
fluxes of the vorticity and baroclinic-like source fluxes that depend on various products
spatial derivatives oA andU . Note that Fickian fluxes always counteract spurious eddie
by smearing out point vortices or, in other words, by diluting highly localized regions ¢
elevated vorticity which lead to a wrap-up of the shear layers (cf. [5], chapters 2.6 and 7
The role of the “baroclinic” fluxes is unclear a priori. In principle, they can either countera
or act in concert with the spurious source because of the first term on the rhs of (22).°
latter seems corroborated by the results of the preceeding section.

4.2. Modified Schemes

In the light of the vorticity arguments above, for the schemes that evince spurious edd
the simplest thing to consider is to accentuate benefits of the Fickian flux and to diminish
magnitude of the eventual “baroclinic” source. Consequently, we selected the FORCE
UHO schemes that originally led to spurious solutions, and repeated the calculations u
first order of accuracy to determine right and left states in the WST of the Godund\ flux
but retaining higher accuracy in the calculation of the tefpsand Eg. The results are
shown in Fig. 3 and are also compared with the corresponding solutions using third-orde
accuracy forthe WST. As seen, the modified schemes now provide the same correct solu
It is important to note that the change of accuracy in the WST affects only the spuric
vortices, but does not alter the solution in the other flow regions. For example, one can |
at the results of the FORCE scheme where in the lower side of the domain the scheme

10 Technically, this was achieved by using first-order-accurate interpolation in the WST of the Lax—Friedric
flux that forms an element of both schemes; cf. sections 2.4 and 2.5.
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FIG. 3. Correction of the spurious solutions in Godunov-type methods: (a) original UHO-L3 schem
(b) modified UHO-L3 scheme with first-order-accurate interpolation in the WST, (c) original FORCE-L3 schen
and (d) modified FORCE-L3 scheme with first-order interpolation in the WST.

not initially result in spurious vortices; after reducing the order of accuracy of the WS
the solution in this flow region remains essentially unchanged. In Table Il, we meas
the impact of the modifications with the differences (between the original and modifi
schemes, normalized by the original scheme) of the time-averaged total kinetic ene
(t = 0+ 1) and instantaneous total kinetic energyt at 1 (corresponding to Figs. 1-3).
For both UHO and FORCE schemes, both measures indicate second-order converg
rate; and for the 256& 256 grid, where both the original and modified schemes give th
same spurious-eddy-free solution, the results agree closely.

TABLE Il
Percentage Difference between the Original and Modi-
fied Schemes for the Time-Averaged Total Kinetic Energy
(t = 0+ 1) as Well as for the Total Kinetic Energy (Values
inside the Brackets) att = 1 (Corresponding to Figs. 1-3)

Grid UHO FORCE
64 x 64 11.08% (18.35%) 4.16% (7.7%)
128 x 128 4.2% (7.75%) 1.46% (2.89%)

256 x 256 0.80% (3.20%) 0.34% (0.70%)
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TABLE 11l
RMS Difference between Numerical and Analytic Solution for
the Modified and Original, UHO-L3 and FORCE-L3, Schemes for
the Problem of an Oscillating Boundary-Layer over a Flat Plate

Ny Modified FORCE-L3 FORCE-L3 Modified UHO-L3  UHO-L3

32 0.127 170e - 3 257e -2 155% -4
64 384e -2 177e -4 106e—2 120e—-4
128 456e — 3 29le—-5 148 -3 202 -5
256 29le—-4 133 -5 975% -4 l1l6e—-5

Note. N, denotes number of grid points in the boundary layer.

To assess the effects of the modified WST term on the accuracy of the schemes bey
the vortex-street problem, we have performed two additional, diverse benchmark te
(a) oscillating boundary layer over a flat plate (alias Stoke’s second problem) with kno
analytic solution [42]; and (b) Burgers’ model of turbulence with a random initial velocit
profile [43]. For the Stoke’s problem, we present in Table Il the root-mean-square (rn
error (with respect to the analytic solution of the unit magnitude) for the modified ar
original UHO-L3 and FORCE-L3 schemes. The errors are clearly smaller for the origir
schemes, however, for resolutions with 128 points and beyond they are already so small
the differences in the plotted solutions (not shown) are practically indistinguishable.
the Burgers’ problem, we measure deviations of various solutions from a high-resolut
reference result generated on 2000Q6000 points space-time mesh using the FORCE-L!
schemé?! In Table 1V, we present such deviations for the time-averaged skewness fac
using the modified and original FORCE-L3 schetfhdn practical terms, both schemes
offer similar accuracy.

Although we have demonstrated that the accuracy of interpolation used in the WST
the Godunov flux can affect the production of spurious solutions, it should be borne in m
that the issue of spurious eddies depends on a delicate balance of truncation errors res
from WST andE; and Eg components of the Godunov flux. Apparently, this is why RU,
LF, and HLLE schemes evince no spurious solutions, even though the WST is defined by
higher-order interpolation. Furthermore, our numerical experiments (not shown) revee
that reducing the accuracy of the WST term in the RU, LF, and HLLE schemes results
overly diffusive solutions for the shear layers. The same effect also follows the use of fir
order accurate interpolation in the fluxes andEg in any of the Godunov-type methods
employed in this study.

5. CONCLUDING REMARKS

We have performed a series of numerical experiments using various Godunov-type m
ods, aiming at the understanding of the numerical mechanisms underlying the forma
of spurious vortical structures in underresolved flows. Similar to [2], we have found tt

1 The fidelity of the reference solution was verified by conducting auxiliary reference runs with the RU-L3 a
LF-L3 schemes that evince no spurious eddies in the original problem (cf. Table I).

2The UHO scheme is unsuitable for this problem because the characteristic-based discretization use
the initial approximation of fluxes has been developed specifically for the advective terms of the Navier—Stc
equations [see (15, 34, 35)].
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TABLE IV
Difference between the Numerical and High-Resolution Ref-
erence Solution (Obtained on a Space—Time Domain with
20,000x 16,000 points) for the Time-Averaged Skewness Fac-
torin the Burgers’ Problem of Turbulence (Based on a Random
Initial Velocity Profile and Periodic Boundary Conditions)

Grid (spacex time) Modified FORCE-L3 FORCE-L3
1000x 500 28.0% 27.5%
2000x 1000 7.7% 7.0%
4000 x 2000 0.9% 0.3%
8000x 4000 0.2% 0.06%

both centered and upwind methods can lead to spurious solutions. Our experiments ¢
to indicate that the generation of spurious eddies depends solely on the advective sch
In particular, it depends strongly on how the numerical dissipation is partitioned betwe
different terms of the advective scheme. In the case of Godunov methods, this depenc
the detailed form of the Godunov flux.

The truncation error of a discretized vorticity equation is not equivalent, in general, to 1
vorticity of the truncation error of a similarly discretized momentum equation. A rigorot
vorticity analysis of nonlinear approximations such as high-order Godunov-type scher
appears very difficult. We thus have considered an idealized finite-difference scheme
showed how the definition of the advective velocities in the primitive variable formulation
the equations can induce a truncation error vorticity source. Pursuing vorticity arguments
a general Godunov flux, we argued that discretizing the WST in (22) with lower-order int
polation should mitigate erroneous vorticity sources. Numerical experiments corrobore
that reducing the order of accuracy in the discretization of WST corrects the numerical
lution of those Godunov-type methods which previously led to spurious vortical structur
We hardly claim that the modified fluxes are universally improved versions of the origir
ones. From the practical viewpoint, however, the effects of extra dissipation arising fr
the reduced accuracy in the WST appear fairly small, as measured for the discussed vo
street problem and two unrelated diverse benchmark tests of an oscillating boundary |
over a flat plate and Burgers’ turbulence. A better appreciation of the benefits/drawba
of the nonlinear dissipation of the Godunov-type methods will be acquired by applying 1
modified and original schemes to a larger number of flow problems of interest to sciel
and engineering.

Although we have succeeded with regaining control over deficient (spurious-eddi
wise) Godunov schemes, by no means do we imply that the problem has been solved t
completion. In particular, the question “why certain schemes evince spurious eddies w
others do not” still eludes a scholastic answer. In the class of Godunov schemes, the i
of spurious eddies seems to depend on a delicate ballance of truncation errors rest
from WST andE_ + Er components of the Godunov flux, and this is the essence of th
balance that needs to be understood. The importance of the spurious-eddies issue ex
beyond elusive intellectual challenge of the numerical analysis itself. The phenomen:
stable and unstable multiple solutions and of spurious steady states, which can occur b
and above the linearized stability limit of a numerical method, attract increasing interest
the literature [see (44) and the references therein]. Here, we demonstrated the signific
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of the nonlinear dynamical behavior of the numerical scheme used for discretizing
advective term of the Navier—Stokes equations. This is of particular relevance to lar
eddy simulation (LES) of turbulent flows, a common tool for research and engineeri
applications. In LES, spurious solutions arising from the advective term discretization ¢
affect the simulated large-eddy structures and subsequently overwhelm the effects of
small scales accounted for by the subgrid scale model. This should be taken into acc
in the design of spatio-temporal filters and subgrid scale models.
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